Alistipes putredinis

Information

Microbe Identification

Alistipes putredinis

Microbe id: PMDBM2020194
Level: Species
NCBI Taxonomy ID:
Taxonomy Species: Alistipes putredinis [28117]
Taxonomy Genus: Alistipes [239759]
Taxonomy Family: Rikenellaceae [171550]

Interactions between microbe and active substances


ⓘ How do we work out MGCs and BGCs of one specific species?


Metabolic gene clusters of Alistipes putredinis

Identified MGC Region
(click for details)
MGC Cluster (Most Similar) Similarity Compound metabolized by the MGC Type of MGC Reference(PubMed ID)
Unclassified gene clustern.a.TPP fatty acidsPMID: 36782070
Unclassified gene clustern.a.OD fatty acidsPMID: 36782070
Arginine2putrescine R. gnavusPutrescinePutrescine to spermidinePMID: 30183487
Succinate to propionate B. thetaSuccinateSuccinate to propionatePMID: 24553467
NADH dehydrogenase I Bacteroides sp.Energy-capturing-relatedNADH dehydrogenase IPMID: 26443736
Lysine degradation C. sticklandiiLysineLysine degradationPMID: 26620920
PorA C. sporogenesCholine/proline/tryptophan/Tyr/Phe/leucine/valinePorAPMID: 31831639
Rnf complex C. sporogenesPyruvate / energy-capturing-relatedPFOR II pathway,Rnf complexPMID: 32301184 / PMID: 23269825
Fumarate to succinate B. thetaiotaomicronFumarateFumarate to succinatePMID: 28049145

n.s. indicates that no significant matches were found by KnownClusterBlast.

View gutSMASH Detailed Result
Biosynthetic gene clusters of Alistipes putredinis


Identified BGC Region
(click for details)
BGC Cluster (Most Similar) Similarity Compound Synthesized by the BGC Type of BGC Reference (PubMed ID)
Unclassified gene clustern.a.RRE-containingPMID: 34019648

n.s. indicates that no significant matches were found by KnownClusterBlast.

View antiSMASH Detailed Result
Map of Alistipes putredinis distribution in human body and influence of diseases distribution in human body and influence of diseases


ⓘ How do you use the microbe distribution map?
ⓘ How did we get the relative abundance and microbe change in the map?
bodymap Oral Nose Esophagus Stomach Trachea Upper respiratory tract Vagina Blood Urethral Lung Cervix Rectum Skin Duodenum Fallopian tube Fallopian tube Peritoneal fluid Uterus Ear Ovary Ovary Colon Ileum Cecum
Disease id Bodysite Relative abundance (%) Disease name Microbe_change

Relative abundance landscape of Alistipes putredinis in human gut microbiota samples



Abundance lanscape in healthy samples (by patients' age)
Abundance lanscape in healthy samples (by patients' country)
Abundance lanscape in disease samples
⚠ About the relative abundance profile

The relative taxonomical abundance data (pre-processed using a unified analysis pipeline) was retrieved from curatedMetagenomicData resource [Edoardo Pasolli, et al. Nat Methods. 2017;14(11):1023-1024]. Data retrieved here was pre-processed as unified relative abundance: at each taxonomic level (e.g., species, genus, family), the sum of microbial abundance of individual microbiota sample was 1, and relative abundance of each microbe was log10 transformed [relative abundance ranges from -7 to 0].

Healthy samples and disease samples (only disease types with >= 20 samples were included) were grouped by age periods, patients?country, or disease type to plot the relative abundance landscape using ggplot2 R package.



Comparative analysis of human gut metagenomes between disease and healthy samples of Alistipes putredinis

Data source: Phenotype comparisons were obtained from GMrepo . We summarized all comparisons that included healthy samples as controls and overlapped with microbes represented in MASI.

Note: LDA scores below 0 indicate taxa enriched in healthy samples, whereas scores above 0 indicate taxa enriched in disease samples.

Disease Project ID LDA score Experiment Type
Hypertension PRJNA509999🔗4.2721526739587mNGS
Diarrhea PRJEB14038🔗-4.46033220880866mNGS
Colorectal Neoplasms PRJNA731589🔗4.18725377672442mNGS
Parkinson Disease PRJEB59350🔗4.27798275672081mNGS
Parkinson Disease PRJNA588035🔗4.35119123985013mNGS
Colitis, Ulcerative PRJNA813736🔗-4.32026949361847mNGS
Colitis, Ulcerative PRJNA398089🔗-4.22591734279658mNGS
Colitis, Ulcerative PRJNA993675🔗-3.84634691341865mNGS
Colitis, Ulcerative PRJNA983946🔗-3.677714603658mNGS
Campylobacter Infections PRJNA660443🔗-4.57875639343318mNGS
Carcinoma, Hepatocellular PRJNA932948🔗-3.8072600106275mNGS
Schizophrenia PRJNA1135717🔗-4.42276425696203mNGS
Crohn Disease PRJNA813736🔗-4.48757729609833mNGS
Crohn Disease PRJEB76677🔗-4.34810179152133mNGS
Crohn Disease PRJNA398089🔗-4.08048437003479mNGS
Crohn Disease PRJNA993675🔗-4.05043685941235mNGS
Crohn Disease PRJNA793776🔗-3.84576358167116mNGS
Dermatitis, Atopic PRJEB45443🔗-3.04210055342273mNGS
Fatigue Syndrome, Chronic PRJNA751448🔗-4.26134206443991mNGS
Fatigue Syndrome, Chronic PRJNA379741🔗-4.22044139385607mNGS
Anorexia PRJNA674716🔗-3.62658988531728mNGS
Cholangiocarcinoma PRJNA932948🔗-3.90587815201016mNGS
Neuroblastoma PRJEB63351🔗-4.20507417863042mNGS
Neuroblastoma PRJNA716780🔗-3.96474667633051mNGS
Irritable Bowel Syndrome PRJNA705217🔗-4.44091608611432mNGS
Irritable Bowel Syndrome PRJEB37924🔗-3.38985894420127mNGS
Depressive Disorder, Major PRJNA762199🔗3.85892924138523mNGS
Gastroesophageal Reflux PRJNA993632🔗4.24462039772445mNGS
Clostridium Infections PRJNA648321🔗-2.89484497242223mNGS
Cystic Fibrosis PRJNA314903🔗-3.53354558013768mNGS
Obesity PRJNA1125836🔗-4.78640124768849mNGS

Microbe-Therapeutic Substance associations are summarized based on THREE types of association evidence, these include:

Association of microbe alteration of therapeutic substances; Microbe and a specific substance will be associated when the microbe can metabolize the substance.
Association of therapeutic substance alteration of microbes; Microbe and a specific substance will be associated when the substance can make the abundance of a microbe increase or decrease.
Association of metabolic reactions of microbes (newly updated in MASI v2.0); This part of data came from microbe metabolic reconstructions based on genome via AGORA2 [Ref: Nature Biotechnology, 41 (2023) 1320?331]. A microbe and a specific substance will be associated when the microbe carries a specific gene whose product can metabolize the substance.





Therapeutic substance that metabolized by Alistipes putredinis



Microbe Name Substance Name Substance Category Substance Subcategory Metabolism Type Metabolites Effects on Substance Experimental System Experimental Organism Experimental Disease Condition Alteration Mechanism Alteration Outcome Reference (PubMed ID)




Therapeutic Substances that affect the Alistipes putredinis



Microbe Name Substance Name Substance Category Substance Subcategory Substance Details Effect on Microbe Effect Strength Experimental System Experimental Organism Experimental Disease Condition Reference (PubMed ID)


Drug involved metabolizing or transporting reactions that are carried out by Alistipes putredinis

ⓘ How do we get these drug reactions?

To obtain the reactions associated with therapeutic substances, we followed a multi-step process:
Downloading Reconstructions: We started by downloading microbial genome-scale metabolic reconstructions from the AGORA2 [Ref: Nature Biotechnology, 41 (2023) 1320?331] database.
Identifying Drug-Associated Reactions: Next, we extracted all reactions that are linked to therapeutic substances from these reconstructions. This involved filtering and identifying reactions specifically related to drug metabolism and transport.
Linking Reaction to Microbes: Utilizing the identified reaction related genes (UidA, Tdc etc.), we machted the corresponding drug-associated reactions to existing microbes in the reconstructions in AGORA2. We could link the presence of these genes in different microbes to the potential for those microbes to carry out the corresponding drug-related reactions.
Putative Drug Reactions: As a result, the drug reactions identified in this manner are putative, meaning they are inferred based on the presence of specific gene sequences. This provides a hypothetical but informed prediction of the microbial capability to interact with therapeutic substances.



Statistical Charts
Detailed Information in Table
Original GEM Files (AGORA2)

Classification of Metabolizing or Transporting Related Reactions

Pie Chart of Functionally Related Protein Families

We provide links to the Genomic-Scale Metabolic Models (GEMs) used in this part, sourced from AGORA2, allowing access to the original .mat files. For more details, visit the AGORA2 repository.

# Model Download
1Alistipes_putredinis_DSM_17216 Download

Detailed Information of drug reactions

Metabolism
Transport
Drug Substrate Drug Metabolite Gene responsible for the reaction Reaction Description Reaction Formula Reaction Subsystem Subsystem Class type Subsystem Class level 1 Subsystem Class level 2 Subsystem Class level 3 Reference (PubMed ID) Microbe Name
Substance Name Gene responsible for the reaction Reaction Description Reaction Subsystem Subsystem Class type Subsystem Class level 1 Subsystem Class level 2 Subsystem Class level 3 Reference (PubMed ID) Microbe Name




Microbe-Herbal Substance associations are summarized based on TWO types of association evidence, these include:

Association of microbe alteration of herbal substances; Microbe and a specific substance will be associated when the microbe can metabolize the substance.
Association of herbal substance alteration of microbes; Microbe and a specific substance will be associated when the substance can make the abundance of a microbe increase or decrease.





Traditional medicines/herbs/herbal compounds that metabolized by Alistipes putredinis


Microbe Name Substance Name Substance Category Substance Subcategory Metabolism Type Metabolites Effects on Substance Experimental System Experimental Organism Experimental Disease Condition Alteration Mechanism Alteration Outcome Reference (PubMed ID)




Traditional medicines/herbs/herbal compounds that affect the Alistipes putredinis



Microbe Name Substance Name Substance Category Substance Subcategory Substance Details Effect on Microbe Effect Strength Experimental System Experimental Organism Experimental Disease Condition Reference (PubMed ID)

Microbe-Dietary Substance associations are summarized based on THREE types of association evidence, these include:

Association of microbe alteration of dietary substances; Microbe and a specific substance will be associated when the microbe can metabolize the substance.
Association of dietary substance alteration of microbes; Microbe and a specific substance will be associated when the substance can make the abundance of a microbe increase or decrease.
Association of metabolic reactions of microbes (newly updated in MASI v2.0); This part of data came from microbe metabolic reconstructions based on genome via AGREDA [Ref:Nature Communications, 12 (2021) 4728]. A microbe and a specific substance will be associated when the microbe carries a specific gene whose product can metabolize the substance.





Dietary Substances alter the abundance of Alistipes putredinis

Microbe Name Substance Name Substance Category Substance Subcategory Substance Details Effect on Microbe Effect Strength Experimental System Experimental Organism Experimental Disease Condition Reference (PubMed ID)





Dietary substance that metabolized by Alistipes putredinis

Microbe Name Substance Name Substance Category Substance Subcategory Substance Details Effect on Microbe Effect Strength Experimental System Experimental Organism Experimental Disease Condition Reference (PubMed ID)




Dietary Substance involved metabolizing or transporting reactions that are carried out by Alistipes putredinis

ⓘ How do we get these diet reactions?

To obtain the reactions associated with dietary substances, we followed a multi-step process:
Downloading Reconstructions: We started by downloading microbial genome-scale metabolic reconstructions from the AGREDA [Ref:Nature Communications, 12 (2021) 4728] database.
Identifying Diet-Associated Reactions: Next, we extracted all reactions that are linked to dietary substances from these reconstructions. This involved filtering and identifying reactions specifically related to dietary substance metabolism and transport.
Linking Reactions to Microbes: Using the identified related genes (e.g., UidA, Tdc) for each drug metabolite reaction, we matched these reactions to microbes possessing the corresponding genes. This allowed us to link the presence of these genes in different microbes to their potential for carrying out the associated drug-related reactions.
Putative Drug Reactions: As a result, the diet reactions identified in this manner are putative, meaning they are inferred based on the presence of specific gene sequences. This provides a hypothetical but informed prediction of the microbial capability to interact with dietary substances.



Statistical Charts
Detailed Information in Table
Original GEM Files (AGREDA)

Classification of Metabolizing or Transporting Related Reactions

Pie Chart of Functionally Related Protein Families

We provide links to the Genomic-Scale Metabolic Models (GEMs) used in this part, sourced from AGREDA, allowing access to the original .xml files. For more details, visit the AGREDA repository.

# Model View
1Alistipes_putredinis_DSM_17216 View

Detailed Information of diet reactions

Metabolism
Transport
Diet Substrate Enzyme Reaction Formula Reaction Subsystem Subsystem Class type Subsystem Class level 1 Subsystem Class level 2 Subsystem Class level 3 Reference (PubMed ID) Microbe Name
Dietary Substance Name Reaction Name Reaction Subsystem Subsystem Class type Subsystem Class level 1 Subsystem Class level 2 Subsystem Class level 3 Reference (PubMed ID) Microbe Name




Microbe-Environmental Substance associations are summarized based on TWO types of association evidence, these include:

Association of microbe alteration of environmental substances; Microbe and a specific substance will be associated when the microbe can metabolize the substance.
Association of environmental substance alteration of microbes; Microbe and a specific substance will be associated when the substance can make the abundance of a microbe increase or decrease.





Environmental Substances that metabolized by Alistipes putredinis



Microbe Name Substance Name Substance Category Substance Subcategory Metabolism Type Metabolites Effects on Substance Experimental System Experimental Organism Experimental Disease Condition Alteration Mechanism Alteration Outcome Reference (PubMed ID)




Environmental Substances that affect the Alistipes putredinis


Microbe Name Substance Name Substance Category Substance Subcategory Substance Details Effect on Microbe Effect Strength Experimental System Experimental Organism Experimental Disease Condition Reference (PubMed ID)
ⓘ Background And User Guideline

Microbe Taxonomy level Species Quorum Sensing (QS) Language QS Language Class Total No. of QS Languages of the Species Reference (PubMed ID)


Diseases associated with the microbe Alistipes putredinis


Microbiota Site Disease Name Disease Association Class Disease Associated Abundence Change Reference (PubMed ID)
Gastrointestinal tractLiver cirrhosisMicrobe abundance associates with diseaseDecreasePMID:25079328



Landscape of Bacteria-Substance-Disease Interaction/Association Network



ⓘ How is the network built?