Ruthenibacterium

Information

Microbe Identification

Ruthenibacterium

Microbe id: PMDBM2009607
Level: genus
NCBI Taxonomy ID: 1905344
Taxonomy Species: n.a. [n.a.]
Taxonomy Genus: Ruthenibacterium [1905344]
Taxonomy Family: Oscillospiraceae [216572]

Interactions between microbe and active substances


ⓘ How do we work out MGCs and BGCs of one specific species?


Metabolic gene clusters of Ruthenibacterium

No data available

n.s. indicates that no significant matches were found by KnownClusterBlast.

View gutSMASH Detailed Result
Biosynthetic gene clusters of Ruthenibacterium


No data available

n.s. indicates that no significant matches were found by KnownClusterBlast.

View antiSMASH Detailed Result
Map of Ruthenibacterium distribution in human body and influence of diseases distribution in human body and influence of diseases


ⓘ How do you use the microbe distribution map?
ⓘ How did we get the relative abundance and microbe change in the map?
bodymap Oral Nose Esophagus Stomach Trachea Upper respiratory tract Vagina Blood Urethral Lung Cervix Rectum Skin Duodenum Fallopian tube Fallopian tube Peritoneal fluid Uterus Ear Ovary Ovary Colon Ileum Cecum
Disease id Bodysite Relative abundance (%) Disease name Microbe_change

Relative abundance landscape of Ruthenibacterium in human gut microbiota samples



Abundance lanscape in healthy samples (by patients' age)
Abundance lanscape in healthy samples (by patients' country)
Abundance lanscape in disease samples
⚠ About the relative abundance profile

The relative taxonomical abundance data (pre-processed using a unified analysis pipeline) was retrieved from curatedMetagenomicData resource [Edoardo Pasolli, et al. Nat Methods. 2017;14(11):1023-1024]. Data retrieved here was pre-processed as unified relative abundance: at each taxonomic level (e.g., species, genus, family), the sum of microbial abundance of individual microbiota sample was 1, and relative abundance of each microbe was log10 transformed [relative abundance ranges from -7 to 0].

Healthy samples and disease samples (only disease types with >= 20 samples were included) were grouped by age periods, patients?country, or disease type to plot the relative abundance landscape using ggplot2 R package.



Comparative analysis of human gut metagenomes between disease and healthy samples of Ruthenibacterium

Data source: Phenotype comparisons were obtained from GMrepo . We summarized all comparisons that included healthy samples as controls and overlapped with microbes represented in MASI.

Note: LDA scores below 0 indicate taxa enriched in healthy samples, whereas scores above 0 indicate taxa enriched in disease samples.

Disease Project ID LDA score Experiment Type
Kidney Failure, Chronic PRJNA449784🔗3.40992049631036mNGS
Kidney Failure, Chronic PRJEB65297🔗4.05538143681599mNGS
Hemangioma, Cavernous PRJNA629755🔗-3.08151610932488mNGS
Hypertension PRJNA509999🔗3.62830883975888mNGS
Diarrhea PRJEB14038🔗3.66705541192828mNGS
Colorectal Neoplasms PRJEB70916🔗-3.0787062005115mNGS
Colorectal Neoplasms PRJNA763023🔗3.17815739246092mNGS
Colorectal Neoplasms PRJNA1138893🔗3.60779331382533mNGS
Colorectal Neoplasms PRJNA936589🔗4.09388453183017mNGS
Parkinson Disease PRJNA588035🔗3.04557597806501mNGS
Parkinson Disease PRJEB59350🔗3.91017052614178mNGS
Colitis, Ulcerative PRJNA398089🔗-3.04644348469783mNGS
Colitis, Ulcerative PRJNA813736🔗3.64339001945886mNGS
Campylobacter Infections PRJNA660443🔗-3.80350217669222mNGS
Non-alcoholic Fatty Liver Disease PRJEB55534🔗2.97462121272631mNGS
Crohn Disease PRJNA398089🔗-2.75182331203599mNGS
Crohn Disease PRJNA993675🔗2.99422939909701mNGS
Purpura, Thrombocytopenic, Idiopathic PRJNA858062🔗2.92177775173317mNGS
Dermatitis, Atopic PRJEB45443🔗-4.25179351589814mNGS
Fatigue Syndrome, Chronic PRJNA878603🔗3.31424926953948mNGS
Fatigue Syndrome, Chronic PRJNA751448🔗3.40619834716718mNGS
Fatigue Syndrome, Chronic PRJNA379741🔗3.53254093972998mNGS
Cholangiocarcinoma PRJNA932948🔗-2.77387271904993mNGS
Irritable Bowel Syndrome PRJEB37924🔗3.3588329361684mNGS
Depressive Disorder, Major PRJNA762199🔗3.54396540816487mNGS
Clostridium Infections PRJNA648321🔗4.09352453802419mNGS
Pancreatic Neoplasms PRJNA665854🔗3.67058272262797mNGS
Cystic Fibrosis PRJNA314903🔗-3.46953219537832mNGS
Biliary Atresia PRJNA730640🔗-3.54252748780363mNGS
Renal Insufficiency, Chronic PRJEB65297🔗3.55405684692139mNGS
Multiple Sclerosis PRJEB28543🔗3.64583429940334mNGS
Fibromyalgia PRJNA521587🔗3.19836564764092mNGS
COVID-19 PRJNA689961🔗3.47513308633929mNGS
COVID-19 PRJDB13214🔗3.8211824957709mNGS

Microbe-Therapeutic Substance associations are summarized based on THREE types of association evidence, these include:

Association of microbe alteration of therapeutic substances; Microbe and a specific substance will be associated when the microbe can metabolize the substance.
Association of therapeutic substance alteration of microbes; Microbe and a specific substance will be associated when the substance can make the abundance of a microbe increase or decrease.
Association of metabolic reactions of microbes (newly updated in MASI v2.0); This part of data came from microbe metabolic reconstructions based on genome via AGORA2 [Ref: Nature Biotechnology, 41 (2023) 1320?331]. A microbe and a specific substance will be associated when the microbe carries a specific gene whose product can metabolize the substance.





Therapeutic substance that metabolized by Ruthenibacterium



Microbe Name Substance Name Substance Category Substance Subcategory Metabolism Type Metabolites Effects on Substance Experimental System Experimental Organism Experimental Disease Condition Alteration Mechanism Alteration Outcome Reference (PubMed ID)




Therapeutic Substances that affect the Ruthenibacterium



Microbe Name Substance Name Substance Category Substance Subcategory Substance Details Effect on Microbe Effect Strength Experimental System Experimental Organism Experimental Disease Condition Reference (PubMed ID)


Drug involved metabolizing or transporting reactions that are carried out by Ruthenibacterium

No data available!

ⓘ How do we get these drug reactions?

To obtain the reactions associated with therapeutic substances, we followed a multi-step process:
Downloading Reconstructions: We started by downloading microbial genome-scale metabolic reconstructions from the AGORA2 [Ref: Nature Biotechnology, 41 (2023) 1320?331] database.
Identifying Drug-Associated Reactions: Next, we extracted all reactions that are linked to therapeutic substances from these reconstructions. This involved filtering and identifying reactions specifically related to drug metabolism and transport.
Linking Reaction to Microbes: Utilizing the identified reaction related genes (UidA, Tdc etc.), we machted the corresponding drug-associated reactions to existing microbes in the reconstructions in AGORA2. We could link the presence of these genes in different microbes to the potential for those microbes to carry out the corresponding drug-related reactions.
Putative Drug Reactions: As a result, the drug reactions identified in this manner are putative, meaning they are inferred based on the presence of specific gene sequences. This provides a hypothetical but informed prediction of the microbial capability to interact with therapeutic substances.



Statistical Charts
Detailed Information in Table
Original GEM Files (AGORA2)

Classification of Metabolizing or Transporting Related Reactions

Pie Chart of Functionally Related Protein Families

We provide links to the Genomic-Scale Metabolic Models (GEMs) used in this part, sourced from AGORA2, allowing access to the original .mat files. For more details, visit the AGORA2 repository.

# Model Download
No records found

Detailed Information of drug reactions

Metabolism
Transport
Drug Substrate Drug Metabolite Gene responsible for the reaction Reaction Description Reaction Formula Reaction Subsystem Subsystem Class type Subsystem Class level 1 Subsystem Class level 2 Subsystem Class level 3 Reference (PubMed ID) Microbe Name
Substance Name Gene responsible for the reaction Reaction Description Reaction Subsystem Subsystem Class type Subsystem Class level 1 Subsystem Class level 2 Subsystem Class level 3 Reference (PubMed ID) Microbe Name




Microbe-Herbal Substance associations are summarized based on TWO types of association evidence, these include:

Association of microbe alteration of herbal substances; Microbe and a specific substance will be associated when the microbe can metabolize the substance.
Association of herbal substance alteration of microbes; Microbe and a specific substance will be associated when the substance can make the abundance of a microbe increase or decrease.





Traditional medicines/herbs/herbal compounds that metabolized by Ruthenibacterium


Microbe Name Substance Name Substance Category Substance Subcategory Metabolism Type Metabolites Effects on Substance Experimental System Experimental Organism Experimental Disease Condition Alteration Mechanism Alteration Outcome Reference (PubMed ID)




Traditional medicines/herbs/herbal compounds that affect the Ruthenibacterium



Microbe Name Substance Name Substance Category Substance Subcategory Substance Details Effect on Microbe Effect Strength Experimental System Experimental Organism Experimental Disease Condition Reference (PubMed ID)

Microbe-Dietary Substance associations are summarized based on THREE types of association evidence, these include:

Association of microbe alteration of dietary substances; Microbe and a specific substance will be associated when the microbe can metabolize the substance.
Association of dietary substance alteration of microbes; Microbe and a specific substance will be associated when the substance can make the abundance of a microbe increase or decrease.
Association of metabolic reactions of microbes (newly updated in MASI v2.0); This part of data came from microbe metabolic reconstructions based on genome via AGREDA [Ref:Nature Communications, 12 (2021) 4728]. A microbe and a specific substance will be associated when the microbe carries a specific gene whose product can metabolize the substance.





Dietary Substances alter the abundance of Ruthenibacterium

Microbe Name Substance Name Substance Category Substance Subcategory Substance Details Effect on Microbe Effect Strength Experimental System Experimental Organism Experimental Disease Condition Reference (PubMed ID)





Dietary substance that metabolized by Ruthenibacterium

Microbe Name Substance Name Substance Category Substance Subcategory Substance Details Effect on Microbe Effect Strength Experimental System Experimental Organism Experimental Disease Condition Reference (PubMed ID)




Dietary Substance involved metabolizing or transporting reactions that are carried out by Ruthenibacterium

ⓘ How do we get these diet reactions?

To obtain the reactions associated with dietary substances, we followed a multi-step process:
Downloading Reconstructions: We started by downloading microbial genome-scale metabolic reconstructions from the AGREDA [Ref:Nature Communications, 12 (2021) 4728] database.
Identifying Diet-Associated Reactions: Next, we extracted all reactions that are linked to dietary substances from these reconstructions. This involved filtering and identifying reactions specifically related to dietary substance metabolism and transport.
Linking Reactions to Microbes: Using the identified related genes (e.g., UidA, Tdc) for each drug metabolite reaction, we matched these reactions to microbes possessing the corresponding genes. This allowed us to link the presence of these genes in different microbes to their potential for carrying out the associated drug-related reactions.
Putative Drug Reactions: As a result, the diet reactions identified in this manner are putative, meaning they are inferred based on the presence of specific gene sequences. This provides a hypothetical but informed prediction of the microbial capability to interact with dietary substances.



Statistical Charts
Detailed Information in Table
Original GEM Files (AGREDA)

Classification of Metabolizing or Transporting Related Reactions

Pie Chart of Functionally Related Protein Families

We provide links to the Genomic-Scale Metabolic Models (GEMs) used in this part, sourced from AGREDA, allowing access to the original .xml files. For more details, visit the AGREDA repository.

# Model View
No records found

Detailed Information of diet reactions

Metabolism
Transport
Diet Substrate Enzyme Reaction Formula Reaction Subsystem Subsystem Class type Subsystem Class level 1 Subsystem Class level 2 Subsystem Class level 3 Reference (PubMed ID) Microbe Name
Dietary Substance Name Reaction Name Reaction Subsystem Subsystem Class type Subsystem Class level 1 Subsystem Class level 2 Subsystem Class level 3 Reference (PubMed ID) Microbe Name




Microbe-Environmental Substance associations are summarized based on TWO types of association evidence, these include:

Association of microbe alteration of environmental substances; Microbe and a specific substance will be associated when the microbe can metabolize the substance.
Association of environmental substance alteration of microbes; Microbe and a specific substance will be associated when the substance can make the abundance of a microbe increase or decrease.





Environmental Substances that metabolized by Ruthenibacterium



Microbe Name Substance Name Substance Category Substance Subcategory Metabolism Type Metabolites Effects on Substance Experimental System Experimental Organism Experimental Disease Condition Alteration Mechanism Alteration Outcome Reference (PubMed ID)




Environmental Substances that affect the Ruthenibacterium


Microbe Name Substance Name Substance Category Substance Subcategory Substance Details Effect on Microbe Effect Strength Experimental System Experimental Organism Experimental Disease Condition Reference (PubMed ID)
ⓘ Background And User Guideline

Microbe Taxonomy level Species Quorum Sensing (QS) Language QS Language Class Total No. of QS Languages of the Species Reference (PubMed ID)


Diseases associated with the microbe Ruthenibacterium


No data available

Microbiota Site Disease Name Disease Association Class Disease Associated Abundence Change Reference (PubMed ID)



Landscape of Bacteria-Substance-Disease Interaction/Association Network



ⓘ How is the network built?