Clostridioides difficile

Information

Microbe Identification

Clostridioides difficile

Microbe id: PMDBM2020046
Level: Species
NCBI Taxonomy ID:
Taxonomy Species: Clostridioides difficile [1496]
Taxonomy Genus: n.a. [n.a.]
Taxonomy Family: n.a. [n.a.]

Interactions between microbe and active substances


ⓘ How do we work out MGCs and BGCs of one specific species?


Metabolic gene clusters of Clostridioides difficile

Identified MGC Region
(click for details)
MGC Cluster (Most Similar) Similarity Compound metabolized by the MGC Type of MGC Reference(PubMed ID)
Unclassified gene clustern.a.Others HGD unassignedPMID: 36782070
PorA C. sporogenesCholine/proline/tryptophan/Tyr/Phe/leucine/valinePorAPMID: 31831639
Arginine degradation C. sticklandiiArginine / putrescineArginine to putrescine,Putrescine to spermidinePMID: 30183487 / PMID: 30183487
Ethanolamine degradation S. typhimuriumEthanolamineEUT pathwayPMID: 20234377
PorA C. sporogenesN.a. / n.a. / n.a.OD lactate related,OD unknown,OD aldehydes relatedPMID: 36782070 / PMID: 36782070 / PMID: 36782070
Proline to aminovalerate C. sticklandiiProlineProline to aminovaleratePMID: 20937090
Glycine reductase C. sticklandiiAminobutyrate / glycineAminobutyrate to Butyrate,Glycine reductasePMID: 27994578 / PMID: 11271425
PorA C. sporogenesCholine/proline/tryptophan/Tyr/Phe/leucine/valinePorAPMID: 31831639
P-cresol synthesis C. difficilleP-cresolP-cresolPMID: 11231288
Leucine reductive branch C. difficileLeucine / choline/proline/tryptophan/Tyr/Phe/leucine/valineLeucine reductionPMID: 15654892 / PMID: 31831639
Acetyl-CoA pathway C. beijerinckiiChemolithoautotrophic substrates such as CO and carbon dioxideAcetyl-CoA pathwayPMID: 27733845
Pyruvate to acetate-formate E. coliPyruvatePyruvate to acetate-formatePMID: 20622067
Acetate to butyrate C. sporogenesAcetateAcetate to butyratePMID: 17241242
Rnf complex C. sporogenesEnergy-capturing-relatedRnf complexPMID: 23269825
PFOR II pathway B. thetaiotaomicronN.a. / pyruvateOD fatty acids,PFOR II pathwayPMID: 36782070 / PMID: 32301184
Hydroxy-L-proline2proline C. difficileHydroxy-L-prolineHydroxy-L-proline to prolinePMID: 32180548

n.s. indicates that no significant matches were found by KnownClusterBlast.

View gutSMASH Detailed Result
Biosynthetic gene clusters of Clostridioides difficile


Identified BGC Region
(click for details)
BGC Cluster (Most Similar) Similarity Compound Synthesized by the BGC Type of BGC Reference (PubMed ID)
Unclassified gene clustern.a.NRPSPMID: 34019648
Unclassified gene clustern.a.Ranthipeptide,cyclic-lactone-autoinducerPMID: 34019648
Unclassified gene clustern.a.RanthipeptidePMID: 34019648
Unclassified gene clustern.a.Cyclic-lactone-autoinducerPMID: 34019648

n.s. indicates that no significant matches were found by KnownClusterBlast.

View antiSMASH Detailed Result
Map of Clostridioides difficile distribution in human body and influence of diseases distribution in human body and influence of diseases


ⓘ How do you use the microbe distribution map?
ⓘ How did we get the relative abundance and microbe change in the map?
bodymap Oral Nose Esophagus Stomach Trachea Upper respiratory tract Vagina Blood Urethral Lung Cervix Rectum Skin Duodenum Fallopian tube Fallopian tube Peritoneal fluid Uterus Ear Ovary Ovary Colon Ileum Cecum
Disease id Bodysite Relative abundance (%) Disease name Microbe_change

Relative abundance landscape of Clostridioides difficile in human gut microbiota samples



Abundance lanscape in healthy samples (by patients' age)
Abundance lanscape in healthy samples (by patients' country)
Abundance lanscape in disease samples
⚠ About the relative abundance profile

The relative taxonomical abundance data (pre-processed using a unified analysis pipeline) was retrieved from curatedMetagenomicData resource [Edoardo Pasolli, et al. Nat Methods. 2017;14(11):1023-1024]. Data retrieved here was pre-processed as unified relative abundance: at each taxonomic level (e.g., species, genus, family), the sum of microbial abundance of individual microbiota sample was 1, and relative abundance of each microbe was log10 transformed [relative abundance ranges from -7 to 0].

Healthy samples and disease samples (only disease types with >= 20 samples were included) were grouped by age periods, patients?country, or disease type to plot the relative abundance landscape using ggplot2 R package.



Comparative analysis of human gut metagenomes between disease and healthy samples of Clostridioides difficile

Data source: Phenotype comparisons were obtained from GMrepo . We summarized all comparisons that included healthy samples as controls and overlapped with microbes represented in MASI.

Note: LDA scores below 0 indicate taxa enriched in healthy samples, whereas scores above 0 indicate taxa enriched in disease samples.

Disease Project ID LDA score Experiment Type
Crohn Disease PRJNA793776🔗2.48672375789197mNGS
Crohn Disease PRJNA429990🔗2.82137254115028mNGS
Neuroblastoma PRJEB63351🔗2.07454819349511mNGS
Clostridium Infections PRJNA648321🔗2.95256181440469mNGS
Cystic Fibrosis PRJNA314903🔗2.93139791722509mNGS

Microbe-Therapeutic Substance associations are summarized based on THREE types of association evidence, these include:

Association of microbe alteration of therapeutic substances; Microbe and a specific substance will be associated when the microbe can metabolize the substance.
Association of therapeutic substance alteration of microbes; Microbe and a specific substance will be associated when the substance can make the abundance of a microbe increase or decrease.
Association of metabolic reactions of microbes (newly updated in MASI v2.0); This part of data came from microbe metabolic reconstructions based on genome via AGORA2 [Ref: Nature Biotechnology, 41 (2023) 1320?331]. A microbe and a specific substance will be associated when the microbe carries a specific gene whose product can metabolize the substance.





Therapeutic substance that metabolized by Clostridioides difficile



Microbe Name Substance Name Substance Category Substance Subcategory Metabolism Type Metabolites Effects on Substance Experimental System Experimental Organism Experimental Disease Condition Alteration Mechanism Alteration Outcome Reference (PubMed ID)




Therapeutic Substances that affect the Clostridioides difficile



Microbe Name Substance Name Substance Category Substance Subcategory Substance Details Effect on Microbe Effect Strength Experimental System Experimental Organism Experimental Disease Condition Reference (PubMed ID)


Drug involved metabolizing or transporting reactions that are carried out by Clostridioides difficile

ⓘ How do we get these drug reactions?

To obtain the reactions associated with therapeutic substances, we followed a multi-step process:
Downloading Reconstructions: We started by downloading microbial genome-scale metabolic reconstructions from the AGORA2 [Ref: Nature Biotechnology, 41 (2023) 1320?331] database.
Identifying Drug-Associated Reactions: Next, we extracted all reactions that are linked to therapeutic substances from these reconstructions. This involved filtering and identifying reactions specifically related to drug metabolism and transport.
Linking Reaction to Microbes: Utilizing the identified reaction related genes (UidA, Tdc etc.), we machted the corresponding drug-associated reactions to existing microbes in the reconstructions in AGORA2. We could link the presence of these genes in different microbes to the potential for those microbes to carry out the corresponding drug-related reactions.
Putative Drug Reactions: As a result, the drug reactions identified in this manner are putative, meaning they are inferred based on the presence of specific gene sequences. This provides a hypothetical but informed prediction of the microbial capability to interact with therapeutic substances.



Statistical Charts
Detailed Information in Table
Original GEM Files (AGORA2)

Classification of Metabolizing or Transporting Related Reactions

Pie Chart of Functionally Related Protein Families

We provide links to the Genomic-Scale Metabolic Models (GEMs) used in this part, sourced from AGORA2, allowing access to the original .mat files. For more details, visit the AGORA2 repository.

# Model Download
1Clostridioides_difficile_002_P50_2011 Download
2Clostridioides_difficile_050_P50_2011 Download
3Clostridioides_difficile_2007855 Download
4Clostridioides_difficile_6503 Download
5Clostridioides_difficile_70_100_2010 Download
6Clostridioides_difficile_ATCC_43255 Download
7Clostridioides_difficile_ATCC_9689 Download
8Clostridioides_difficile_BI1 Download
9Clostridioides_difficile_CD37 Download
10Clostridioides_difficile_CIP_107932 Download
11Clostridioides_difficile_ERR1204032 Download
12Clostridioides_difficile_ERR2221119 Download
13Clostridioides_difficile_ERR2221219 Download
14Clostridioides_difficile_ERR2221225 Download
15Clostridioides_difficile_M120 Download
16Clostridioides_difficile_M68 Download
17Clostridioides_difficile_QCD_23m63 Download
18Clostridioides_difficile_QCD_37x79 Download
19Clostridioides_difficile_QCD_63q42 Download
20Clostridioides_difficile_QCD_66c26 Download
21Clostridioides_difficile_QCD_76w55 Download
22Clostridioides_difficile_QCD_97b34 Download
23Clostridioides_difficile_630 Download

Detailed Information of drug reactions

Metabolism
Transport
Drug Substrate Drug Metabolite Gene responsible for the reaction Reaction Description Reaction Formula Reaction Subsystem Subsystem Class type Subsystem Class level 1 Subsystem Class level 2 Subsystem Class level 3 Reference (PubMed ID) Microbe Name
Substance Name Gene responsible for the reaction Reaction Description Reaction Subsystem Subsystem Class type Subsystem Class level 1 Subsystem Class level 2 Subsystem Class level 3 Reference (PubMed ID) Microbe Name




Microbe-Herbal Substance associations are summarized based on TWO types of association evidence, these include:

Association of microbe alteration of herbal substances; Microbe and a specific substance will be associated when the microbe can metabolize the substance.
Association of herbal substance alteration of microbes; Microbe and a specific substance will be associated when the substance can make the abundance of a microbe increase or decrease.





Traditional medicines/herbs/herbal compounds that metabolized by Clostridioides difficile


Microbe Name Substance Name Substance Category Substance Subcategory Metabolism Type Metabolites Effects on Substance Experimental System Experimental Organism Experimental Disease Condition Alteration Mechanism Alteration Outcome Reference (PubMed ID)




Traditional medicines/herbs/herbal compounds that affect the Clostridioides difficile



Microbe Name Substance Name Substance Category Substance Subcategory Substance Details Effect on Microbe Effect Strength Experimental System Experimental Organism Experimental Disease Condition Reference (PubMed ID)

Microbe-Dietary Substance associations are summarized based on THREE types of association evidence, these include:

Association of microbe alteration of dietary substances; Microbe and a specific substance will be associated when the microbe can metabolize the substance.
Association of dietary substance alteration of microbes; Microbe and a specific substance will be associated when the substance can make the abundance of a microbe increase or decrease.
Association of metabolic reactions of microbes (newly updated in MASI v2.0); This part of data came from microbe metabolic reconstructions based on genome via AGREDA [Ref:Nature Communications, 12 (2021) 4728]. A microbe and a specific substance will be associated when the microbe carries a specific gene whose product can metabolize the substance.





Dietary Substances alter the abundance of Clostridioides difficile

Microbe Name Substance Name Substance Category Substance Subcategory Substance Details Effect on Microbe Effect Strength Experimental System Experimental Organism Experimental Disease Condition Reference (PubMed ID)





Dietary substance that metabolized by Clostridioides difficile

Microbe Name Substance Name Substance Category Substance Subcategory Substance Details Effect on Microbe Effect Strength Experimental System Experimental Organism Experimental Disease Condition Reference (PubMed ID)




Dietary Substance involved metabolizing or transporting reactions that are carried out by Clostridioides difficile

ⓘ How do we get these diet reactions?

To obtain the reactions associated with dietary substances, we followed a multi-step process:
Downloading Reconstructions: We started by downloading microbial genome-scale metabolic reconstructions from the AGREDA [Ref:Nature Communications, 12 (2021) 4728] database.
Identifying Diet-Associated Reactions: Next, we extracted all reactions that are linked to dietary substances from these reconstructions. This involved filtering and identifying reactions specifically related to dietary substance metabolism and transport.
Linking Reactions to Microbes: Using the identified related genes (e.g., UidA, Tdc) for each drug metabolite reaction, we matched these reactions to microbes possessing the corresponding genes. This allowed us to link the presence of these genes in different microbes to their potential for carrying out the associated drug-related reactions.
Putative Drug Reactions: As a result, the diet reactions identified in this manner are putative, meaning they are inferred based on the presence of specific gene sequences. This provides a hypothetical but informed prediction of the microbial capability to interact with dietary substances.



Statistical Charts
Detailed Information in Table
Original GEM Files (AGREDA)

Classification of Metabolizing or Transporting Related Reactions

Pie Chart of Functionally Related Protein Families

We provide links to the Genomic-Scale Metabolic Models (GEMs) used in this part, sourced from AGREDA, allowing access to the original .xml files. For more details, visit the AGREDA repository.

# Model View
No records found!

Detailed Information of diet reactions

Metabolism
Transport
Diet Substrate Enzyme Reaction Formula Reaction Subsystem Subsystem Class type Subsystem Class level 1 Subsystem Class level 2 Subsystem Class level 3 Reference (PubMed ID) Microbe Name
Dietary Substance Name Reaction Name Reaction Subsystem Subsystem Class type Subsystem Class level 1 Subsystem Class level 2 Subsystem Class level 3 Reference (PubMed ID) Microbe Name




Microbe-Environmental Substance associations are summarized based on TWO types of association evidence, these include:

Association of microbe alteration of environmental substances; Microbe and a specific substance will be associated when the microbe can metabolize the substance.
Association of environmental substance alteration of microbes; Microbe and a specific substance will be associated when the substance can make the abundance of a microbe increase or decrease.





Environmental Substances that metabolized by Clostridioides difficile



Microbe Name Substance Name Substance Category Substance Subcategory Metabolism Type Metabolites Effects on Substance Experimental System Experimental Organism Experimental Disease Condition Alteration Mechanism Alteration Outcome Reference (PubMed ID)




Environmental Substances that affect the Clostridioides difficile


Microbe Name Substance Name Substance Category Substance Subcategory Substance Details Effect on Microbe Effect Strength Experimental System Experimental Organism Experimental Disease Condition Reference (PubMed ID)
ⓘ Background And User Guideline

Microbe Taxonomy level Species Quorum Sensing (QS) Language QS Language Class Total No. of QS Languages of the Species Reference (PubMed ID)


Diseases associated with the microbe Clostridioides difficile


No data available

Microbiota Site Disease Name Disease Association Class Disease Associated Abundence Change Reference (PubMed ID)



Landscape of Bacteria-Substance-Disease Interaction/Association Network



ⓘ How is the network built?